Direct and Indirect Costs of Dinitrogen Fixation in Crocosphaera watsonii WH8501 and Possible Implications for the Nitrogen Cycle
نویسندگان
چکیده
The recent detection of heterotrophic nitrogen (N(2)) fixation in deep waters of the southern Californian and Peruvian OMZ questions our current understanding of marine N(2) fixation as a process confined to oligotrophic surface waters of the oceans. In experiments with Crocosphaera watsonii WH8501, a marine unicellular diazotrophic (N(2) fixing) cyanobacterium, we demonstrated that the presence of high nitrate concentrations (up to 800 μM) had no inhibitory effect on growth and N(2) fixation over a period of 2 weeks. In contrast, the environmental oxygen concentration significantly influenced rates of N(2) fixation and respiration, as well as carbon and nitrogen cellular content of C. watsonii over a 24-h period. Cells grown under lowered oxygen atmosphere (5%) had a higher nitrogenase activity and respired less carbon during the dark cycle than under normal oxygen atmosphere (20%). Respiratory oxygen drawdown during the dark period could be fully explained (104%) by energetic needs due to basal metabolism and N(2) fixation at low oxygen, while at normal oxygen these two processes could only account for 40% of the measured respiration rate. Our results revealed that under normal oxygen concentration most of the energetic costs during N(2) fixation (∼60%) are not derived from the process of N(2) fixation per se but rather from the indirect costs incurred for the removal of intracellular oxygen or by the reversal of oxidative damage (e.g., nitrogenase de novo synthesis). Theoretical calculations suggest a slight energetic advantage of N(2) fixation relative to assimilatory nitrate uptake, when oxygen supply is in balance with the oxygen requirement for cellular respiration (i.e., energy generation for basal metabolism and N(2) fixation). Taken together our results imply the existence of a niche for diazotrophic organisms inside oxygen minimum zones, which are predicted to further expand in the future ocean.
منابع مشابه
Phosphorus scavenging in the unicellular marine diazotroph Crocosphaera watsonii.
Through the fixation of atmospheric nitrogen and photosynthesis, marine diazotrophs play a critical role in the global cycling of nitrogen and carbon. Crocosphaera watsonii is a recently described unicellular diazotroph that may significantly contribute to marine nitrogen fixation in tropical environments. One of the many factors that can constrain the growth and nitrogen fixation rates of mari...
متن کاملHydrogen cycling by the unicellular marine diazotroph Crocosphaera watsonii strain WH8501.
The hydrogen (H₂) cycle associated with the dinitrogen (N₂) fixation process was studied in laboratory cultures of the marine cyanobacterium Crocosphaera watsonii. The rates of H₂ production and acetylene (C₂H₂) reduction were continuously measured over the diel cycle with simultaneous measurements of fast repetition rate fluorometry and dissolved oxygen. The maximum rate of H₂ production was c...
متن کاملArsenate Resistance in the Unicellular Marine Diazotroph Crocosphaera watsonii
The toxic arsenate ion can behave as a phosphate analog, and this can result in arsenate toxicity especially in areas with elevated arsenate to phosphate ratios like the surface waters of the ocean gyres. In these systems, cellular arsenate resistance strategies would allow phytoplankton to ameliorate the effects of arsenate transport into the cell. Despite the potential coupling between arsena...
متن کاملLow genomic diversity in tropical oceanic N2-fixing cyanobacteria.
High levels of genomic and allelic microvariation have been found in major marine planktonic microbial species, including the ubiquitous open ocean cyanobacterium, Prochlorococcus marinus. Crocosphaera watsonii is a unicellular cyanobacterium that has recently been shown to be important in oceanic N2 fixation and has been reported from the Atlantic and Pacific oceans in both hemispheres, and th...
متن کاملLight-Limited Growth Rate Modulates Nitrate Inhibition of Dinitrogen Fixation in the Marine Unicellular Cyanobacterium Crocosphaera watsonii
Biological N2 fixation is the dominant supply of new nitrogen (N) to the oceans, but is often inhibited in the presence of fixed N sources such as nitrate (NO3-). Anthropogenic fixed N inputs to the ocean are increasing, but their effect on marine N2 fixation is uncertain. Thus, global estimates of new oceanic N depend on a fundamental understanding of factors that modulate N source preferences...
متن کامل